Definite determinantal representations of multivariate polynomials
نویسندگان
چکیده
منابع مشابه
Normal and Triangular Determinantal Representations of Multivariate Polynomials
In this paper we give a new and simple algorithm to put any multivariate polynomial into a normal determinant form in which each entry has the form i i i b x a , and in each column the same variable appears. We also apply the algorithm to obtain a triangular determinant representation, a reduced determinant representation, and a uniform determinant representation of any multivariable polynomi...
متن کاملPolynomials with and without Determinantal Representations
The problem of writing real zero polynomials as determinants of linear matrix polynomials has recently attracted a lot of attention. Helton and Vinnikov [9] have proved that any real zero polynomial in two variables has a determinantal representation. Brändén [2] has shown that the result does not extend to arbitrary numbers of variables, disproving the generalized Lax conjecture. We provide a ...
متن کاملIntegral representations for multivariate logarithmic polynomials
In the paper, by induction and recursively, the author proves that the generating function of multivariate logarithmic polynomials and its reciprocal are a Bernstein function and a completely monotonic function respectively, establishes a Lévy-Khintchine representation for the generating function of multivariate logarithmic polynomials, deduces an integral representation for multivariate logari...
متن کاملDeterminantal inequalities for positive definite matrices
Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A ( j) i , 16 j 6 k , where A ( j) 1 , . . . ,A ( j) m are of the same size for each j . We prove the inequality det( m ∑ i=1 A−1 i ) > det( m ∑ i=1 (A (1) i ) −1) · · ·det( m ∑ i=1 (A (k) i ) −1) and more determinantal inequalities related to positive definite matrices.
متن کاملSome new families of definite polynomials and the composition conjectures
The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2019
ISSN: 0219-4988,1793-6829
DOI: 10.1142/s0219498820501297